Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiao-Bo Huang,* Rong Xu, Jin-Chang Ding, Hua-Yue Wu, Xi-Chang Zhang, Miao-Chang Liu and Hong-Ping Xiao

School of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail:
xiaobhuang@hotmail.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.067$
$w R$ factor $=0.149$
Data-to-parameter ratio $=14.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

(Z)-Ethyl 3-(4-methylphenyl)-2-[(triphenyl-phosphoranylidene)amino]prop-2-enoate

The title compound, $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{P}$, exists in the Z form.

Comment

Recently, readily available iminophosphoranes have become useful building blocks in organic synthetic strategies directed towards the synthesis of nitrogen-containing heterocycles (Fresneda \& Molina, 2004). The title compound, (I), is an intermediate in the preparation of imidazolinones exhibiting various biological properties, for example fungicidal and herbicidal activities (Yang et al., 2004). Some crystal structures involving iminophosphorane groups have been published, including recent reports from our laboratory (Ding et al., 2005; Huang et al., 2005).

(I)

Compound (I) (Fig. 1) exists in the Z configuration and contains four benzene rings, three of which, C1-C6 (ring A), $\mathrm{C} 7-\mathrm{C} 12$ (ring B) and $\mathrm{C} 13-\mathrm{C} 18$ (ring C), belong to the triphenylphosphine group. The dihedral angles between the planes of rings $A / B, A / C$ and B / C are 76.4 (1), 86.8 (1) and 56.7 (1) ${ }^{\circ}$, respectively. Bond lengths and angles in (I) (Table 1) are unexceptional and compare well with those mentioned above from our laboratory.

Experimental

The title compound was readily synthesized in 60% yield by the Staudinger reaction of ethyl β-azidoacetate $(0.01 \mathrm{~mol})$ with triphenylphosphine $(0.01 \mathrm{~mol})$ at room temperature (Molina et al., 1993). Single crystals of (I) suitable for X-ray data collection were obtained by slow evaporation of an ethanol solution (m.p. 403405 K). Spectroscopic analysis: IR ($\mathrm{KBr}, \nu, \mathrm{cm}^{-1}$): 2940, 1670, 1588, 1415, 1231; ${ }^{1} \mathrm{H}$ NMR (chloroform-d, δ, p.p.m.): 8.03-7.08 ($m, 19 \mathrm{H}$), $6.72\left(d, 1 \mathrm{H}, J_{\mathrm{PH}}=6.8 \mathrm{~Hz}\right), 3.84(q, 2 \mathrm{H}, J=7.1 \mathrm{~Hz}), 2.32(s, 3 \mathrm{H}), 0.99(t$,
$3 \mathrm{H}, J=7.1 \mathrm{~Hz}$); ${ }^{13} \mathrm{C}$ NMR (chloroform- d, δ, p.p.m.): 168.04, 135.37, $133.81,133.56,133.27,132.46,132.33,132.11,131.98,131.89,130.87$, 129.34, 128.65, 128.53,128.43, 128.37, 128.16, 127.99, 116.81, 77.45, 76.60, $60.58,21.29,14.02$.

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}_{2} \mathrm{P}$	$D_{x}=1.219 \mathrm{Mg} \mathrm{m}^{-3}$ $M_{r}=465.50$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation
$a=10.6177(8) \AA$	Cell parameters from 2173
$b=17.6052(13) \AA$	reflections
$c=14.1076(10) \AA$	$\mu=2.4-24.1^{\circ}$
$\beta=105.897(2)^{\circ}$	$T=0.14 \mathrm{~mm}^{-1}$
$V=2536.2(3) \AA^{3}$	$T=298(2) \mathrm{K}$
$Z=4$	Block, colourless
	$0.38 \times 0.17 \times 0.16 \mathrm{~mm}$
Data collection	
Bruker APEX area-detector	4560 independent reflections
\quad diffractometer	3518 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.043$
Absorption correction: multi-scan	$\theta_{\text {max }}=25.2^{\circ}$
$\quad(S A D A B S ;$ Bruker, 2002)	$h=-12 \rightarrow 10$
$\quad T_{\text {min }}=0.950, T_{\text {max }}=0.979$	$k=-20 \rightarrow 21$
13404 measured reflections	$l=-14 \rightarrow 16$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.067$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0583 P)^{2}\right. \\
& +1.0666 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.33 \mathrm{e}_{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.30 \mathrm{e}^{-3}
\end{aligned}
$$

Figure 1
The molecular structure of (I). with the atom-numbering scheme, showing displacement ellipsoids at the 50% probability level.
groups, and $\mathrm{Csp}{ }^{3}-\mathrm{H}=0.97 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for the methylene group.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXL97.

The authors acknowledge financial support from the Wenzhou Bureau of Science and Technology of China (grant No. G 2004053).

References

Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02) and SMART (Version 5.62). Bruker AXS Inc., Madison, Winsonsin, USA.
Ding, J.-C., Huang, X.-B., Wu, H.-Y., Liu, M.-C. \& Hu, M. L. (2005). Acta Cryst. E61, o1259-o1260.
Fresneda, P. M. \& Molina, P. (2004). Synlett, pp. 1-17.
Huang, X.-B., Liu, M.-C., Wu, H.-Y., Ding, J.-C. \& Hu, M. L. (2005). Acta Cryst. E61, o280-o281.
Molina, P., Pastor, A. \& Vilaplana, M. J. (1993). Tetrahedron, 49, 7769-7778.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Yang, F. L., Liu, Z. J., Huang, X. B. \& Ding, M. W. (2004). J. Heterocycl. Chem. 41, 77-83.

H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of $\mathrm{Csp}^{2}-\mathrm{H}=0.93 \AA$ with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{C}), \mathrm{Csp}{ }^{3}-\mathrm{H}=0.96 \AA$ with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$ for methyl

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

P1-N1	$1.571(2)$	$\mathrm{O} 1-\mathrm{C} 20$	$1.199(3)$
$\mathrm{P} 1-\mathrm{C} 7$	$1.808(3)$	$\mathrm{O} 2-\mathrm{C} 20$	$1.339(3)$
$\mathrm{P} 1-\mathrm{C} 13$	$1.813(3)$	$\mathrm{O} 2-\mathrm{C} 21$	$1.444(4)$
$\mathrm{P} 1-\mathrm{C} 1$	$1.819(3)$	$\mathrm{N} 1-\mathrm{C} 19$	$1.378(3)$
$\mathrm{N} 1-\mathrm{P} 1-\mathrm{C} 7$	$115.43(12)$	$\mathrm{C} 13-\mathrm{P} 1-\mathrm{C} 1$	$101.69(12)$
$\mathrm{N} 1-\mathrm{P} 1-\mathrm{C} 13$	$116.77(13)$	$\mathrm{C} 20-\mathrm{O} 2-\mathrm{C} 21$	$116.3(2)$
$\mathrm{C} 7-\mathrm{P} 1-\mathrm{C} 13$	$109.93(12)$	$\mathrm{C} 19-\mathrm{N} 1-\mathrm{P} 1$	$130.39(19)$
$\mathrm{N} 1-\mathrm{P} 1-\mathrm{C} 1$	$105.35(12)$	$\mathrm{O} 1-\mathrm{C} 20-\mathrm{O} 2$	$122.8(3)$
$\mathrm{C} 7-\mathrm{P} 1-\mathrm{C} 1$	$106.00(13)$		

